
Table of Contents
Introduction . . 1
Outline . . 1
Background. . 2
	 NFVi Acceleration Solutions. 2

	 SRv6 Overview. . 2

	 SR Proxy for Service Function
	 Chaining. . 3

SRv6 Software Implementations. . . . 3
	 Linux SRv6 Implementations
	 Overview. . 3

	 VPP Implementation. 4

SRv6 Acceleration Approach. 4
	 SR Dynamic Proxy Offload. 4

SRv6 Throughput Performance. 5
	 Test Setup. . 5

	 Results. . 6

Conclusion. . 7
About HCL Engineering R&D
Services . . 7
Where to Find More Information. 7
References. . 7

Authors
SRv6 Solution Team

 HCL Technologies

Chuck Tato
Director,

Communications Business Division
Intel® Corporation

NFVi Acceleration
SRv6

Segment Routing Over IPv6
Acceleration Using Intel® FPGA
Programmable Acceleration Card
N3000

Introduction
Segment Routing (SR) is an emerging technology that helps in addressing the
requirements of the new Network Functions Virtualization (NFV) and Software
Defined Network (SDN) architecture. It provides a unified solution for networking
programmability, Service Function Chaining (SFC), protocols simplification, traffic
engineering, and mobile versus fixed network convergence.

SR leverages the source routing paradigm. A node steers a packet through a SR
Policy instantiated as an ordered list of instructions called "segments" (often
referred by their Segment Identifiers, or SIDs). A segment can represent any
instruction, either topological (to forward packets through an identified path) or
service-based (within an NFV/SDN architecture a service is represented by a Virtual
Network Function (VNF) implemented by a container or a Virtual Machine (VM)). A
segment can have a semantic local to an SR node or global within an SR domain. By
leveraging this technology, the network no longer needs to maintain a per-flow or
per-application state.

The SR architecture can be instantiated on various data planes, such as
Multiprotocol Label Switching (MPLS) or IPv6. In this paper, we will refer to SR
implemented over IPv6 (SRv6). There are a variety of efficient SRv6 implementation
options available, ranging from pure software implementation to offloading certain
functionality of SRv6 to hardware, to pure hardware-based products.

This white paper gives an overview of the available SRv6 software implementations;
however, the main objective is to present a solution built for the Intel® FPGA
Programmable Acceleration Card (Intel FPGA PAC) N3000 for the Vector Packet
Processing (VPP) data plane. For this solution, the performance results in saving
valuable CPU cycles and resources are given.

Outline
•	 Section 3 provides a brief background on accelerator solutions and SRv6

protocol

•	 Section 4 describes the main SRv6 software implementations available

•	 Section 5 describes the SRv6 acceleration approach based on VPP data plane
and related processing details

•	 Section 6 presents performance data for Service Function Chaining through SR
dynamic proxy

white paper

2

White Paper | HCL Segment Routing Over IPv6 Acceleration Using Intel FPGA Programmable Acceleration Card N3000

Background
NFVi Acceleration Solutions

Network Functions Virtualization infrastructure (NFVi)-
proposed approach utilizes IPv6 routing-based architecture
in data centers. Moreover, the usage of SRv6-based fabric
in data centers can help reduce underlying protocol stacks
needed (for instance Border Gateway Protocol (BGP) and
Internal Gateway Protocol (IGP) in data centers, simplifies
the interconnection with core network). It also allows implicit
handling of Equal Cost Multi Path (ECMP) for traffic engineering
and simple implementation for Ethernet VPN (EVPN) overlays.
This leads to SRv6 domain extending to the Tunnel Endpoint
Termination (TEP) located in data plane servers.

SRv6 Overview

SRv6-based architecture relies on the source routing
paradigm. An ordered list of instructions, called segments
can be used to steer packets through a set of intermediate
nodes towards the destination. In an SR domain, the IPv6
segments are transported through a specific IPv6 Routing
header called the SRv6 header which is an extension header
within the IPv6 header space. There are two types of network
segments:

•	 Adjacency segments: A local (to the node) segment that
allows forwarding on a specific link

•	 Prefix segments: A global (to the SR domain) segment
that is attached to a network prefix, a node segment
being a special case of prefix segment

Moreover, in the context of Service Function Chaining, the
service segment (local to the node) represents a specific
service to apply to a packet.

To be able to enforce specific paths, edge nodes must insert
Segment Routing Header (SRH) containing the ordered
list of Segments (see Figure 2). This information can be
obtained by a routing protocol or through an SDN controller
configuration.

The NFV industry is increasingly realizing that standard
network interface card (NIC) products may have performance
limitations when supporting emerging NFV/SDN workloads.
This performance limitation in the network will require a
higher level of dedicated compute resources for networking
in the servers, which will result in less resources being
made available for actual VNFs. Even by accepting this
additional overhead for networking, performance becomes
less predictable than solutions where the same networking
functions are realized in hardware.

While keeping the NFVi as an open platform, Intel FPGA
acceleration solutions allows for offloading of low-level
specific network functions to the hardware, increasing data
path performances and predictability, saving CPU cycles and
cores, thus leaving additional CPU server resources available
for VNFs and workloads.

With the Intel FPGA PAC N3000, the FPGA-based solution
can be re-programmed using a standard Intel FPGA
development environment such as the Intel Quartus® Prime
software, allowing for almost any type of functionality being
offloaded to provide a high level of performance.

Figure 1.	 Data Center Architecture

Figure 2.	 SRv6 Header Format

Spine

SRv6 Domain

Leaf

100G100G

SRv6
Routing

Compute

100G100G

SRv6
Routing

Compute

The HCL solution presented here is based on an
implementation of SRv6 protocol processing offloaded to the
Intel FPGA PAC N3000.

This solution will provide two main advantages to the
telecom operator’s virtual installation environments:

•	 Greatly improve the data plane throughput while still
using open hardware platforms

•	 Allow for smooth network upgrade of new SRv6 features
without changing the installed hardware base

0 7 8 15 16 23 24 31

Next Header Hdr Ext Len Routing Type
(4)

Segments
Left

Last Entry Flags Tag

Segment List [0]

Segment List [1]

Segment List [n]

Optional Type Length Value (TLV)

3

White Paper | HCL Segment Routing Over IPv6 Acceleration Using Intel FPGA Programmable Acceleration Card N3000

SR Proxy for Service Function Chaining

SRv6 supports NFV SFC by simply mapping VNFs to be
traversed in ordered list of SIDs. For SR-unaware VNFs,
compute nodes can run an SR proxy function which can
alter the packet to allow processing by Service Function. The
generic behavior of an SR proxy is to intercept traffic destined
to the VNF via a locally instantiated service segment, modify
it by removing SR related information and send it out to
IFACE-OUT VNF interface. Post that, when traffic is sent back
from VNF to SR proxy via IFACE-IN, the SR information is
restored and forwarding takes place.

Linux SRv6 Implementations Overview

SRv6 implementation has been merged into Linux Kernel
4.10, based on Light Weight Tunnel (LWTunnel). The SRv6
SIDs are configured as FIB entries via IPv6 route. iproute2
user-space utility was also extended to support addition of
SID and its associated behavior.

Linux 4.18 custom SRv6 functions can be implemented in
Linux kernel using the extended Berkeley Packet Filter (eBPF)
through End.BPF hook. Currently supported behaviors
include T.insert, T.encaps for Transit and End, End.T, End.X,
End.DX2, End.DX6, End.DT6 as Endpoints.

Four different SR proxy mechanisms have been defined
within the IETF:

•	 Static proxy, available in VPP

•	 Dynamic proxy, available in VPP

•	 Shared proxy

•	 Masquerading proxy, available in VPP

SRv6 performance data presented later is related to the SR
dynamic proxy scenario.

In SRv6, segments are encoded as regular 128-bit IPv6
addresses. The segment list is contained in the SRH, and up
to 128 segments can be inserted. Segments are stored in
reverse order in the segment list. For example, the segment at
index 0 corresponds to the last instruction to execute.

Here is a brief SRH field explanation:

•	 Next Header: Indicates which type of header is following
the SRH

•	 Hdr Ext Len: Length of the SRH header in eight-bytes
units, not including the first eight bytes

•	 Routing Type: Always set to 4

•	 Segments Left (SL): Indicates the number of remaining
segments

•	 Last Entry: Specifies the index of the last segment in the
segment list

•	 Flags: Cleanup flag is of interest for the penultimate
segment endpoint SRH stripping

•	 Tag: Can be used to mark the packet as belonging to a
class of packets sharing the same properties

•	 Type-Length-Value (TLV): TLVs are 3-tuples that can be
used to store additional data in the SRH; the structure
of this 3-tuple allows TLVs of variable length to be
implemented, the Length field specifies the number of
bytes contained in Value, and finally Type stores a unique
identifier for each TLV type

With the introduction of the SRH, new packet processing
rules for SRv6 packets must be defined.

The three types of nodes that can be involved in SRv6 packet
processing are:

•	 Source SR Node: A node inserting an SRH into an IPv6
packet. This can either be an end host originating an
IPv6 packet, or an SRv6 ingress router encapsulating a
received packet in an outer IPv6 header with an SRH

•	 Transit Node: A node forwarding an IPv6 packet whose
destination address (DA) is not an SID belonging to the
node; they operate as pure IPv6 routers, forwarding
packets based on IPv6 DA

•	 SR Segment Endpoint Node: A node receiving an IPv6
packet whose DA is an SID belonging to the node

The Internet Engineering Task Force (IETF) Draft on SRv6
Network Programming defines the SRv6 architecture and
elaborates the concept of SRv6 SID and possible functions
associated with it. The SRv6 SID can be encoded as a
LOC:FUNCT where the locator part is the most significant L
bits of the SID (it represents a network location or an SRv6
Node) and the function part is the less significant 128-L bits
(which represents a function implemented on the Node).
A function may require additional arguments (ARGS) that
would be placed immediately after the FUNCT in the form
of LOC:FUNCT:ARGS::. Within the same IETF Draft there is
also a set of “well-known” function definitions that can be
associated with an SID.

VNF

Non SR Traffic

IFACE-OUT IFACE-IN
SR TrafficSR Traffic

SR Proxy

Figure 3.	 Generic SR Proxy

SRv6 Software Implementations
Data plane implementations of SRv6 have been made
available both from open-source software organizations
(Linux and fd.io VPP) and hardware/ASIC telco vendor
providers. Interoperability tests have also been reported
under IETF. While this paper presents performance data for
VPP-accelerated data plane only, a brief overview of Linux*
kernel-based implementation can be found in the following
sections. Some data about Linux kernel performance is also
available in literature.

4

White Paper | HCL Segment Routing Over IPv6 Acceleration Using Intel FPGA Programmable Acceleration Card N3000

VPP Implementation

Initial support for SRv6 in VPP was made available in
the version 17.04 release from April 2017. Currently, the
following SRv6 Endpoints are supported: End, End.X, End.
DX6, End.DT6, End.DX4, End.DT4, End.DX2, End.B6, End.
B6.Encaps. Moreover, T.insert, T.encaps policy behaviors are
also supported. To fully support the programmability option
(which is crucial for SR paradigm), VPP allows the developer
to easily create custom SRv6 functions which, through
ad-hoc application programming interfaces (APIs), can be
connected to VPP as plugins. Plugin require code for the
custom behavior through a new graph node, while basic SRv6
features are already implemented in VPP. The SRv6 enpdoint
implementation of SR unaware service function chain proxy
functions are available as a VPP plugin.

SREXT is a kernel module providing both basic and advanced
segment routing functions. It can be used as a standalone
SRv6 implementation or as a complement to existing SRv6
kernel implementation. SREXT supports a completely
independent “my local SID table” and adds support for
End.AD and End.AM to the already available Linux Kernel
Endpoint set.

This means that developing orchestration support is crucial
for operators to be able to introduce and manage such kind
of solutions inside their existing environments.

Open Programmable Accelerator Engine (OPAE) developed
by Intel is used as the basic framework to develop solution
management application. SRv6 acceleration approach
proposed here deals with improving the performances of
VPP-based SRv6 implementation, where the entire SRv6
processing is done through VPP/DPDK software. The basic
idea is to offload CPU intensive operation to the Intel FPGA
PAC N3000, defining a new functional splitting of SRv6
behaviors between hardware and VPP software. Interworking
between the Intel FPGA PAC N3000 and VPP is supported
by introducing new graph nodes in VPP, which oversees
encoding/decoding/process hardware-related information.

As a result, throughput performance gain is basically given
by the difference between the CPU core cycles saved by
partially offloading SRv6 processing in hardware and the
additional processing needed by the newly added hardware
interworking functions.

SRv6 Acceleration Approach
Compute nodes within SRv6-enabled NFVi installations
can benefit from additional acceleration provided by the
Intel FPGA PAC N3000 and is seamlessly integrated with the
infrastructure, simplifying the deployment and networking
(see Figure 4).

Controller
Network Node

PAC
Orchestration

SRv6
Networking-VPP

M
an

ag
em

en
t N

et
w

or
k

Compute Node
VNF 1

VNF 2

VNF N

Virtual Network

PAC
MGMT

OPAE Drv

VPP

VPP IPv6 Routing

PAC Handling

Gen3 x16 PCIe*

FPGA

Parser Lookup Editor

LSID Table SR Cache
Table

Provider Network

HCL + Intel® HCL Open Source Intel

Figure 4.	 Accelerator in OpenStack Reference Architecture

SR Dynamic Proxy Offload

The basic idea to support this use case is to offload SRH
encapsulation or decapsulation operations and consequently
SR Cache handling to the Intel FPGA PAC N3000. In ingress
direction, the Intel FPGA PAC N3000 performs an SID lookup,
and based on lookup result can strip the outer IPv6/SRH
headers and add the proper metadata header instead, for
the VPP to be able to process inner frames/packets. In egress
direction inner frames/packets are received on SmartNIC
together with metadata, which instruct the Intel FPGA PAC
N3000 on SRH cache entry to be used for that specific flow.
Route lookup in this approach is still done in VPP.

5

White Paper | HCL Segment Routing Over IPv6 Acceleration Using Intel FPGA Programmable Acceleration Card N3000

Figure 5.	 Basic Processing

Figure 6.	 Test Setup

Table 1.	 DUT Configuration

SRv6 Throughput Performance
In our experiments, we tested throughput performances of
End.AD2 behavior in both accelerated and non-accelerated
scenarios.

Throughput measurement definition follows IETF RFC 1242
and it is reported in packet per second (pps). Either Non Drop
Rate (NDR) or Partial Drop Rate (PDR) are defined, depending
on acceptable tolerance. In this paper, we provide PDR-based
performance measurements with a threshold of 0.5%.

SRv6 traffic matching End.AD2 case was sent in both
directions, starting from full line rate and decreasing the
rate of both Cisco TRex traffic generator ports until losses
fell below the given threshold. The same test was repeated
for both legacy VPP with the Intel FPGA PAC N3000 in
“passthrough” mode.

Test Setup

The test setup we used is shown in Figure 6 with
configuration settings as reported in Table 1.

VM [DPDK - Test PMD]

VIF VIF

VPP vRouter

Intel® FPGA PAC
(N3000)

P0 P1

P0 P1

100G 100G

IXIA Traffic Generator

VNF

vNIC

virtIO

VPP Router

Route Lookup

SmartNIC SRH Decap

SID Lookup

SRv6 Parse

Ingress

VNF

vNIC

virtIO

VPP Router

Route Lookup

SmartNIC
SRH Cache

SID LEncap

Egress

DEVICE UNDER TEST (DUT) CONFIGURATION

CPU Family 6, Model 85, Model Name Intel®
Xeon® Platinum 8180M CPU at 2.50 GHz

Socket CPU Socket 1 Used

Core/socket 56 (28 Physical + 28 Logical)

Intel HyperT Disabled

Intel VT Enabled

Intel Turbo Boost Enabled, 3 GHz.

RAM 192 GB

SmartNIC PAC N3000 1x4x25G

Transceivers QSFP28 –SR4 with 12-core Fiber MTO
cable

Host operating system
(OS) Centos 7.4 kernel 3.10

Huge pages 2 MB

Data Plane
Development Kit
(DPDK) version

19.05

VPP version 19.08

QEMU version 2.6

6

White Paper | HCL Segment Routing Over IPv6 Acceleration Using Intel FPGA Programmable Acceleration Card N3000

Results

Performance measurements were carried out for three
different packet sizes: 192B, 512B, and Internet Mix (IMIX)
where the traffic profile is according to Table 2.

Results are reported in Figure 7 for 192B packet size. Core
Cycles Per Packet (CPP) saving ratios are reported in Table
3. Throughput performance is inversely proportional to the
average CPP.

Results show higher performances for shorter packet sizes,
since with short packets CPP savings are more impactful
compared to CPU cache processing. With reference to
Figure 7, maximum throughput achievable for a pure VPP-
based solution using 12 cores is obtained by the accelerated
solution with six cores only. This performance gain is visible
with 512 bytes packet size as well. By looking at the IMIX
profile, presence of a relevant percentage of 1,500 bytes
packets further decreases achievable gain.

Table 2.	 IMIX Profile

Table 3.	 Cycles Per Packet Saving

PACKET SIZE
(BYTES)

DISTRIBUTION IN
PACKETS

DISTRIBUTION IN
BYTES

192 58.33% 22%

576 33.33% 47%

1,500 8.33% 31%

PACKET SIZE
(BYTES) CPP SAVING

192 84%

512 72%

IMIX 67.5%

0.00

20.00

40.00

60.00

80.00

100.00

120.00

57.80

96.84

48.43

8 12
Cores

45.00

Pa
ck

et
 R

at
e

- G
BP

S

SRv6 AD2 Acceleration - 192B - GBPS

SRv6 SW SRv6 Acc

Figure 7.	 Performance Data with 152 Bytes Packet Size

Conclusion
VPP or DPDK implementation of SRv6 already provides an
optimized solution with good throughput performances.
The proposed acceleration solution with the Intel FPGA PAC
N3000 increases the overall throughput, allowing for more
predictable performance, and freeing up CPU Cores/Cycles
for other VNFs and Workloads. Furthermore, additional
performance improvement is possible, though it would require
the placing of routing functions and interfaces between the
network and VMs within the hardware, and maximizing the
Intel FPGA capabilities to the fullest possible extent.

About HCL Engineering and R&D Services
HCL ERS, a division of HCL Technologies, enables
technology-led organizations to go to market with innovative
products and solutions. HCL partners with its customers
through flexible engagement models, combining accelerated
product development, adoption of new technologies, and
agile and industrialized service delivery to deliver a world
class customer experience, and creates associated solution
delivery ecosystems to help bring market leadership. HCL
develops engineering products, solutions and platforms
across semiconductor, telecom and networking, consumer
electronics, software, online, servers and storage, medical
devices, aerospace and defense, automotive, and industrial
manufacturing for its customers.

7

References
[1]	 C. Filsfils et al., "Segment Routing Architecture", Internet

Requests for Comments RFC Editor RFC 8402, available:
https://tools.ietf.org/html/rfc8402

[2]	 C. Filsfils et al., "SRv6 Network Programming", IETF
Internet-Draft, available: https://tools.ietf.org/html/
draft-ietf-spring-srv6-network-programming-00

[3]	 C. Filsfils et al., "IPv6 Segment Routing Header (SRH)",
IETF InternetDraft, available: https://tools.ietf.org/html/
draft-ietf-6man-segment-routing-header-18

[4]	 F. Clad et al., Service Programming with Segment
Routing, available: https://tools.ietf.org/html/draft-
xuclad-spring-sr-service-programming-02

[5]	 C. Filsfils et al., "SRv6 interoperability report", IETF
Internet-Draft, available: https://tools.ietf.org/html/
draft-filsfils-spring-srv6-interop-02

[6]	 "VPP", available: https://wiki.fd.io/view/VPP

[7]	 “SRv6: Segment Routing for IPv6”, available:
https://docs.fd.io/vpp/17.07/srv6_doc.html

[8]	 S. Bradner, "Benchmarking Terminology for Network
Interconnection Devices", Internet Requests for
Comments RFC Editor RFC 1242, July 1991, available:
https://tools.ietf.org/html/rfc1242

[9]	 TRex realistic traffic generator, available:
https://trextgn.cisco.com/

[10]	 “srext – a Linux kernel module implementing SRv6
Network Programming model”, available:
https://github.com/netgroup/SRv6-net-prog

[11]	 A. Abdelsalam et al., "Performance of IPv6 Segment
Routing in Linux Kernel," 2018 14th International
Conference on Network and Service Management
(CNSM), Rome, 2018, pp. 414-419

[12]	 P. Lapukhov et al., " Use of BGP for Routing in Large-
Scale Data Centers", Internet Requests for Comments
RFC Editor RFC 7938, August 2016, available:
https://tools.ietf.org/html/rfc7938

Where to Find More Information
For more details contact: erx@hcl.com.

Follow us on Twitter: http://twitter.com/hclers and our blog
http://ers.hclblogs.com/

Visit our website: www.hcltech.com/engineering-services/

  Please Recycle

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may
cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products. For more information go to www.intel.com/benchmarks.

Performance results are based on testing as of October 2019 and may not reflect all publicly available security updates. See configuration disclosure for details. No product or component can be
absolutely secure.

For this solution, the performance results in saving valuable CPU cycles and resources are given.

Intel does not control or audit third-party data. You should review this content, consult other sources, and confirm whether referenced data are accurate.

© Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Xeon, and Intel Quartus are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel reserves the
right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service
described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and
before placing orders for products or services.

*Other marks and brands may be claimed as the property of others.

WP-01295-1.0

White Paper | HCL Segment Routing Over IPv6 Acceleration Using Intel FPGA Programmable Acceleration Card N3000

https://tools.ietf.org/html/draft-ietf-spring-srv6-network-programming-00
https://tools.ietf.org/html/draft-ietf-spring-srv6-network-programming-00
https://tools.ietf.org/html/draft-ietf-6man-segment-routing-header-18
https://tools.ietf.org/html/draft-ietf-6man-segment-routing-header-18
https://tools.ietf.org/html/draft-xuclad-spring-sr-service-programming-02
https://tools.ietf.org/html/draft-xuclad-spring-sr-service-programming-02
https://tools.ietf.org/html/draft-filsfils-spring-srv6-interop-02
https://tools.ietf.org/html/draft-filsfils-spring-srv6-interop-02
mailto:ers.info@hcl.com

