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Introduction
Segment Routing (SR) is an emerging technology that helps in addressing the 
requirements of the new Network Functions Virtualization (NFV) and Software 
Defined Network (SDN) architecture. It provides a unified solution for networking 
programmability, Service Function Chaining (SFC), protocols simplification, traffic 
engineering, and mobile versus fixed network convergence. 

SR leverages the source routing paradigm. A node steers a packet through a SR 
Policy instantiated as an ordered list of instructions called "segments" (often 
referred by their Segment Identifiers, or SIDs). A segment can represent any 
instruction, either topological (to forward packets through an identified path) or 
service-based (within an NFV/SDN architecture a service is represented by a Virtual 
Network Function (VNF) implemented by a container or a Virtual Machine (VM)).  A 
segment can have a semantic local to an SR node or global within an SR domain.  By 
leveraging this technology, the network no longer needs to maintain a per-flow or 
per-application state.

The SR architecture can be instantiated on various data planes, such as 
Multiprotocol Label Switching (MPLS) or IPv6. In this paper, we will refer to SR 
implemented over IPv6 (SRv6). There are a variety of efficient SRv6 implementation 
options available, ranging from pure software implementation to offloading certain 
functionality of SRv6 to hardware, to pure hardware-based products.

This white paper gives an overview of the available SRv6 software implementations; 
however, the main objective is to present a solution built for the Intel® FPGA 
Programmable Acceleration Card (Intel FPGA PAC) N3000 for the Vector Packet 
Processing (VPP) data plane. For this solution, the performance results in saving 
valuable CPU cycles and resources are given.

Outline
•	 Section 3 provides a brief background on accelerator solutions and SRv6 

protocol

•	 Section 4 describes the main SRv6 software implementations available

•	 Section 5 describes the SRv6 acceleration approach based on VPP data plane 
and related processing details

•	 Section 6 presents performance data for Service Function Chaining through SR 
dynamic proxy 
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Background
NFVi Acceleration Solutions

Network Functions Virtualization infrastructure (NFVi)-
proposed approach utilizes IPv6 routing-based architecture 
in data centers. Moreover, the usage of SRv6-based fabric 
in data centers can help reduce underlying protocol stacks 
needed (for instance Border Gateway Protocol (BGP) and 
Internal Gateway Protocol (IGP) in data centers, simplifies 
the interconnection with core network). It also allows implicit 
handling of Equal Cost Multi Path (ECMP) for traffic engineering 
and simple implementation for Ethernet VPN (EVPN) overlays. 
This leads to SRv6 domain extending to the Tunnel Endpoint 
Termination (TEP) located in data plane servers.

SRv6 Overview

SRv6-based architecture relies on the source routing 
paradigm. An ordered list of instructions, called segments 
can be used to steer packets through a set of intermediate 
nodes towards the destination. In an SR domain, the IPv6 
segments are transported through a specific IPv6 Routing 
header called the SRv6 header which is an extension header 
within the IPv6 header space. There are two types of network 
segments:

•	 Adjacency segments:  A local (to the node) segment that 
allows forwarding on a specific link

•	 Prefix segments: A global (to the SR domain) segment 
that is attached to a network prefix, a node segment 
being a special case of prefix segment

Moreover, in the context of Service Function Chaining, the 
service segment (local to the node) represents a specific 
service to apply to a packet.

To be able to enforce specific paths, edge nodes must insert 
Segment Routing Header (SRH) containing the ordered 
list of Segments (see Figure 2). This information can be 
obtained by a routing protocol or through an SDN controller 
configuration.

The NFV industry is increasingly realizing that standard 
network interface card (NIC) products may have performance 
limitations when supporting emerging NFV/SDN workloads. 
This performance limitation in the network will require a 
higher level of dedicated compute resources for networking 
in the servers, which will result in less resources being 
made available for actual VNFs. Even by accepting this 
additional overhead for networking, performance becomes 
less predictable than solutions where the same networking 
functions are realized in hardware. 

While keeping the NFVi as an open platform, Intel FPGA 
acceleration solutions allows for offloading of low-level 
specific network functions to the hardware, increasing data 
path performances and predictability, saving CPU cycles and 
cores, thus leaving additional CPU server resources available 
for VNFs and workloads.

With the Intel FPGA PAC N3000, the FPGA-based solution 
can be re-programmed using a standard Intel FPGA 
development environment such as the Intel Quartus® Prime 
software, allowing for almost any type of functionality being 
offloaded to provide a high level of performance.

Figure 1.	 Data Center Architecture

Figure 2.	 SRv6 Header Format
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Intel FPGA PAC N3000.
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SR Proxy for Service Function Chaining

SRv6 supports NFV SFC by simply mapping VNFs to be 
traversed in ordered list of SIDs. For SR-unaware VNFs, 
compute nodes can run an SR proxy function which can 
alter the packet to allow processing by Service Function. The 
generic behavior of an SR proxy is to intercept traffic destined 
to the VNF via a locally instantiated service segment, modify 
it by removing SR related information and send it out to 
IFACE-OUT VNF interface. Post that, when traffic is sent back 
from VNF to SR proxy via IFACE-IN, the SR information is 
restored and forwarding takes place.

Linux SRv6 Implementations Overview

SRv6 implementation has been merged into Linux Kernel 
4.10, based on Light Weight Tunnel (LWTunnel). The SRv6 
SIDs are configured as FIB entries via IPv6 route. iproute2 
user-space utility was also extended to support addition of 
SID and its associated behavior.

Linux 4.18 custom SRv6 functions can be implemented in 
Linux kernel using the extended Berkeley Packet Filter (eBPF) 
through End.BPF hook. Currently supported behaviors 
include T.insert, T.encaps for Transit and End, End.T, End.X, 
End.DX2, End.DX6, End.DT6 as Endpoints.

Four different SR proxy mechanisms have been defined 
within the IETF:

•	 Static proxy, available in VPP

•	 Dynamic proxy, available in VPP

•	 Shared proxy

•	 Masquerading proxy, available in VPP

SRv6 performance data presented later is related to the SR 
dynamic proxy scenario.

In SRv6, segments are encoded as regular 128-bit IPv6 
addresses. The segment list is contained in the SRH, and up 
to 128 segments can be inserted. Segments are stored in 
reverse order in the segment list. For example, the segment at 
index 0 corresponds to the last instruction to execute.

Here is a brief SRH field explanation:

•	 Next Header: Indicates which type of header is following 
the SRH 

•	 Hdr Ext Len: Length of the SRH header in eight-bytes 
units, not including the first eight bytes

•	 Routing Type: Always set to 4

•	 Segments Left (SL): Indicates the number of remaining 
segments

•	 Last Entry: Specifies the index of the last segment in the 
segment list

•	 Flags: Cleanup flag is of interest for the penultimate 
segment endpoint SRH stripping

•	 Tag: Can be used to mark the packet as belonging to a 
class of packets sharing the same properties

•	 Type-Length-Value (TLV): TLVs are 3-tuples that can be 
used to store additional data in the SRH; the structure 
of this 3-tuple allows TLVs of variable length to be 
implemented, the Length field specifies the number of 
bytes contained in Value, and finally Type stores a unique 
identifier for each TLV type

With the introduction of the SRH, new packet processing 
rules for SRv6 packets must be defined.

The three types of nodes that can be involved in SRv6 packet 
processing are:

•	 Source SR Node: A node inserting an SRH into an IPv6 
packet. This can either be an end host originating an 
IPv6 packet, or an SRv6 ingress router encapsulating a 
received packet in an outer IPv6 header with an SRH

•	 Transit Node: A node forwarding an IPv6 packet whose 
destination address (DA) is not an SID belonging to the 
node; they operate as pure IPv6 routers, forwarding 
packets based on IPv6 DA

•	 SR Segment Endpoint Node: A node receiving an IPv6 
packet whose DA is an SID belonging to the node

The Internet Engineering Task Force (IETF) Draft on SRv6 
Network Programming defines the SRv6 architecture and 
elaborates the concept of SRv6 SID and possible functions 
associated with it. The SRv6 SID can be encoded as a 
LOC:FUNCT where the locator part is the most significant L 
bits of the SID (it represents a network location or an SRv6 
Node) and the function part is the less significant 128-L bits 
(which represents a function implemented on the Node). 
A function may require additional arguments (ARGS) that 
would be placed immediately after the FUNCT in the form 
of LOC:FUNCT:ARGS::. Within the same IETF Draft there is 
also a set of “well-known” function definitions that can be 
associated with an SID.

VNF

Non SR Traffic

IFACE-OUT IFACE-IN
SR TrafficSR Traffic

SR Proxy

Figure 3.	 Generic SR Proxy

SRv6 Software Implementations
Data plane implementations of SRv6 have been made 
available both from open-source software organizations 
(Linux and fd.io VPP) and hardware/ASIC telco vendor 
providers. Interoperability tests have also been reported 
under IETF. While this paper presents performance data for 
VPP-accelerated data plane only, a brief overview of Linux* 
kernel-based implementation can be found in the following 
sections. Some data about Linux kernel performance is also 
available in literature.
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VPP Implementation

Initial support for SRv6 in VPP was made available in 
the version 17.04 release from April 2017.  Currently, the 
following SRv6 Endpoints are supported: End, End.X, End.
DX6, End.DT6, End.DX4, End.DT4, End.DX2, End.B6, End.
B6.Encaps. Moreover, T.insert, T.encaps policy behaviors are 
also supported. To fully support the programmability option 
(which is crucial for SR paradigm), VPP allows the developer 
to easily create custom SRv6 functions which, through 
ad-hoc application programming interfaces (APIs), can be 
connected to VPP as plugins. Plugin require code for the 
custom behavior through a new graph node, while basic SRv6 
features are already implemented in VPP.  The SRv6 enpdoint 
implementation of SR unaware service function chain proxy 
functions are available as a VPP plugin.

SREXT is a kernel module providing both basic and advanced 
segment routing functions. It can be used as a standalone 
SRv6 implementation or as a complement to existing SRv6 
kernel implementation. SREXT supports a completely 
independent “my local SID table” and adds support for 
End.AD and End.AM to the already available Linux Kernel 
Endpoint set.

This means that developing orchestration support is crucial 
for operators to be able to introduce and manage such kind 
of solutions inside their existing environments.

Open Programmable Accelerator Engine (OPAE) developed 
by Intel is used as the basic framework to develop solution 
management application. SRv6 acceleration approach 
proposed here deals with improving the performances of 
VPP-based SRv6 implementation, where the entire SRv6 
processing is done through VPP/DPDK software. The basic 
idea is to offload CPU intensive operation to the Intel FPGA 
PAC N3000, defining a new functional splitting of SRv6 
behaviors between hardware and VPP software. Interworking 
between the Intel FPGA PAC N3000 and VPP is supported 
by introducing new graph nodes in VPP, which oversees 
encoding/decoding/process hardware-related information.

As a result, throughput performance gain is basically given 
by the difference between the CPU core cycles saved by 
partially offloading SRv6 processing in hardware and the 
additional processing needed by the newly added hardware 
interworking functions.

SRv6 Acceleration Approach
Compute nodes within SRv6-enabled NFVi installations 
can benefit from additional acceleration provided by the 
Intel FPGA PAC N3000 and is seamlessly integrated with the 
infrastructure, simplifying the deployment and networking 
(see Figure 4).
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Figure 4.	 Accelerator in OpenStack Reference Architecture

SR Dynamic Proxy Offload

The basic idea to support this use case is to offload SRH 
encapsulation or decapsulation operations and consequently 
SR Cache handling to the Intel FPGA PAC N3000. In ingress 
direction, the Intel FPGA PAC N3000 performs an SID lookup, 
and based on lookup result can strip the outer IPv6/SRH 
headers and add the proper metadata header instead, for 
the VPP to be able to process inner frames/packets. In egress 
direction inner frames/packets are received on SmartNIC 
together with metadata, which instruct the Intel FPGA PAC 
N3000 on SRH cache entry to be used for that specific flow. 
Route lookup in this approach is still done in VPP.
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Figure 5.	 Basic Processing

Figure 6.	 Test Setup

Table 1.	 DUT Configuration

SRv6 Throughput Performance
In our experiments, we tested throughput performances of 
End.AD2 behavior in both accelerated and non-accelerated 
scenarios. 

Throughput measurement definition follows IETF RFC 1242 
and it is reported in packet per second (pps). Either Non Drop 
Rate (NDR) or Partial Drop Rate (PDR) are defined, depending 
on acceptable tolerance. In this paper, we provide PDR-based 
performance measurements with a threshold of 0.5%.

SRv6 traffic matching End.AD2 case was sent in both 
directions, starting from full line rate and decreasing the 
rate of both Cisco TRex traffic generator ports until losses 
fell below the given threshold. The same test was repeated 
for both legacy VPP with the Intel FPGA PAC N3000 in 
“passthrough” mode. 

Test Setup

The test setup we used is shown in Figure 6 with 
configuration settings as reported in Table 1.

VM [DPDK - Test PMD]

VIF VIF

VPP vRouter

Intel® FPGA PAC
(N3000)

P0 P1

P0 P1

100G 100G

IXIA Traffic Generator

VNF
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SRv6 Parse
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virtIO
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SRH Cache

SID LEncap

Egress

DEVICE UNDER TEST (DUT) CONFIGURATION

CPU Family 6, Model 85, Model Name Intel® 
Xeon® Platinum 8180M CPU at 2.50 GHz

Socket CPU Socket 1 Used

Core/socket 56 (28 Physical + 28 Logical)

Intel HyperT Disabled

Intel VT Enabled

Intel Turbo Boost Enabled, 3 GHz.

RAM 192 GB

SmartNIC PAC N3000 1x4x25G

Transceivers QSFP28 –SR4 with 12-core Fiber MTO 
cable 

Host operating system 
(OS) Centos 7.4 kernel 3.10

Huge pages 2 MB

Data Plane 
Development Kit 
(DPDK) version

19.05

VPP version 19.08

QEMU version 2.6
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Results

Performance measurements were carried out for three 
different packet sizes: 192B, 512B, and Internet Mix (IMIX) 
where the traffic profile is according to Table 2.

Results are reported in Figure 7 for 192B packet size. Core 
Cycles Per Packet (CPP) saving ratios are reported in Table 
3. Throughput performance is inversely proportional to the 
average CPP.  

Results show higher performances for shorter packet sizes, 
since with short packets CPP savings are more impactful 
compared to CPU cache processing.  With reference to 
Figure 7, maximum throughput achievable for a pure VPP-
based solution using 12 cores is obtained by the accelerated 
solution with six cores only. This performance gain is visible 
with 512 bytes packet size as well. By looking at the IMIX 
profile, presence of a relevant percentage of 1,500 bytes 
packets further decreases achievable gain. 

Table 2.	 IMIX Profile

Table 3.	 Cycles Per Packet Saving

PACKET SIZE 
(BYTES)

DISTRIBUTION IN 
PACKETS

DISTRIBUTION IN 
BYTES

192 58.33% 22%

576 33.33% 47%

1,500 8.33% 31%

PACKET SIZE 
(BYTES) CPP SAVING

192 84%

512 72%

IMIX 67.5%
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Figure 7.	 Performance Data with 152 Bytes Packet Size

Conclusion
VPP or DPDK implementation of SRv6 already provides an 
optimized solution with good throughput performances. 
The proposed acceleration solution with the Intel FPGA PAC 
N3000 increases the overall throughput, allowing for more 
predictable performance, and freeing up CPU Cores/Cycles 
for other VNFs and Workloads. Furthermore, additional  
performance improvement is possible, though it would require 
the placing of routing functions and interfaces between the 
network and VMs within the hardware, and maximizing the 
Intel FPGA capabilities to the fullest possible extent.

About HCL Engineering and R&D Services
HCL ERS, a division of HCL Technologies, enables 
technology-led organizations to go to market with innovative 
products and solutions. HCL partners with its customers 
through flexible engagement models, combining accelerated 
product development, adoption of new technologies, and 
agile and industrialized service delivery to deliver a world 
class customer experience, and creates associated solution 
delivery ecosystems to help bring market leadership. HCL 
develops engineering products, solutions and platforms 
across semiconductor, telecom and networking, consumer 
electronics, software, online, servers and storage, medical 
devices, aerospace and defense, automotive, and industrial 
manufacturing for its customers.
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